Thursday, 18 April 2013

The Use Of Liposome Preparations

By Tamika Quinn


Liposome preparations are simply artificial spherical vesicles consisting principally of cholesterol and phospholipid molecules. These molecules are organised to form bilayers. Vesicles are classified as either being multilamellar or unilamellar. The former is made up of several bilayers while the latter has only one. On average, most of the vesicles have a diameter of less than 400nm.

One of the methods used in forming the vesicles is known as sonication. Here, the lipid suspension containing cholesterol and phospholipids is hydrated and made to swell so as to separate the various bilayers. As the bilayers separate, they form large lipid vesicles. These are later broken down into smaller units by use of an instrument known as a sonicator. The sonicator delivers high levels of energy to the large molecules and breaks them down within 5 to 10 minutes.

Another popularly used technique is known as extrusion. In this technique, the suspension is subjected to a cyclical process of freezing and thawing that eventually results in the breakdown of the large vesicles. Homogenous of size is achieved after a few cycles. Another variant of the same is the passage of the vesicles through progressively decreasing pores until very fine particles are obtained.

The sizes of the vesicles will slightly depending on among other factors, duration of the process, energy used, the composition of the suspension used and the tuning of the sonicator. Regardless of the size, the vesicles have been found to bear very close resemblance to the cell membranes in structure. Both cell membranes and lipid vesicles have phospholipid heads that are hydrophilic and fatty acid tails that are hydrophobic. Their physical properties are like those of surfactants.

The uses of lipid vesicles continue to increase by the day. Clinically, they play a central role in the delivery of drugs to various targets. They are now widely preferred over viral vectors for a number of reasons. One of the greatest advantages that they have is the fact that they are not immunogenic and rarely cause allergic reactions. This has been a big problem with the viral vectors. Another significant strength is that they are easier to synthesise and put to use.

There are a number of lipid vesicle pharmacological preparations being used in routine clinical practice today. These include among others, liposomal amphotericin B (an antifungal agent), liposomal cytarabine (an anticancer agent for treating malignant meningitis), liposomal IRIV vaccine, morphine and doxorubicine (treats metastatic breast cancer). Many more others are undergoing clinical trials.

Apart from drug delivery, lipid vesicles also play a vital role in the administration of nutrients. They are especially useful in supplementing nutrients that are deficient in the diet or those that cannot be easily absorbed orally due to their low bioavailability. Liposome encapsulation is currently one of the most efficient ways of administering vitamin C. The same principle is employed in the delivery of pesticides to plants, delivery of enzymes to their sites of action in the body and in the fixing of dyes to textiles.

If the successes being seen in research involving liposome preparations is anything to go by, then the future is very bright as regards the use of these vesicles. The lack of serious side effects associated with their use is a very encouraging fact. There have been a few reports suggesting that there may be cellular toxicity particularly in prolonged or heavy uses but these are just isolated cases. Another cause for concern is the presence of inhibitors in serum which could potentially reduce the effectiveness.




About the Author:



No comments:

Post a Comment